Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.290
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Agric Food Chem ; 72(15): 8460-8475, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38564364

ABSTRACT

Liver injury and progressive liver failure are severe life-threatening complications in sepsis, further worsening the disease and leading to death. Macrophages and their mediated inflammatory cytokine storm are critical regulators in the occurrence and progression of liver injury in sepsis, for which effective treatments are still lacking. l-Ascorbic acid 6-palmitate (L-AP), a food additive, can inhibit neuroinflammation by modulating the phenotype of the microglia, but its pharmacological action in septic liver damage has not been fully explored. We aimed to investigate L-AP's antisepticemia action and the possible pharmacological mechanisms in attenuating septic liver damage by modulating macrophage function. We observed that L-AP treatment significantly increased survival in cecal ligation and puncture-induced WT mice and attenuated hepatic inflammatory injury, including the histopathology of the liver tissues, hepatocyte apoptosis, and the liver enzyme levels in plasma, which were comparable to NLRP3-deficiency in septic mice. L-AP supplementation significantly attenuated the excessive inflammatory response in hepatic tissues of septic mice in vivo and in cultured macrophages challenged by both LPS and ATP in vitro, by reducing the levels of NLRP3, pro-IL-1ß, and pro-IL-18 mRNA expression, as well as the levels of proteins for p-I-κB-α, p-NF-κB-p65, NLRP3, cleaved-caspase-1, IL-1ß, and IL-18. Additionally, it impaired the inflammasome ASC spot activation and reduced the inflammatory factor contents, including IL-1ß and IL-18 in plasma/cultured superannuants. It also prevented the infiltration/migration of macrophages and their M1-like inflammatory polarization while improving their M2-like polarization. Overall, our findings revealed that L-AP protected against sepsis by reducing macrophage activation and inflammatory cytokine production by suppressing their activation in NF-κB and NLRP3 inflammasome signal pathways in septic liver.


Subject(s)
Inflammasomes , Sepsis , Mice , Animals , Inflammasomes/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Caspase 1/genetics , Caspase 1/metabolism , Interleukin-18 , Macrophage Activation , Signal Transduction , Liver/metabolism , Ascorbic Acid , Sepsis/complications , Sepsis/drug therapy , Lipopolysaccharides/pharmacology
2.
Zhongguo Zhong Yao Za Zhi ; 49(4): 884-893, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621895

ABSTRACT

Sepsis is a systemic inflammatory response syndrome caused by infection, with high morbidity and mortality. Sepsis-induced liver injury(SILI) is one of the manifestations of sepsis-induced multiple organ syndrome. At present, there is no recommended pharmacological intervention for the treatment of SILI. traditional Chinese medicine(TCM), based on the holism and dialectical treatment concept, shows the therapeutic characteristics of multi-target and multi-pathway and can comprehensively prevent and treat SILI by interfering with inflammatory factors, inflammatory signaling pathways, and anti-oxidative stress and inhibiting apoptosis. This article reviewed the experimental studies on the treatment of SILI with TCM to clarify its pathogenic mechanism and therapeutic characteristics, so as to provide more ideas and directions for the development or preparation of new drugs.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Drugs, Chinese Herbal , Sepsis , Humans , Medicine, Chinese Traditional , Chemical and Drug Induced Liver Injury, Chronic/drug therapy , Sepsis/complications , Sepsis/drug therapy , Apoptosis , Signal Transduction , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology
3.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1388-1396, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621987

ABSTRACT

This study aims to systematically review the clinical features and outcome indicators in randomized controlled trial(RCT) of traditional Chinese medicine(TCM) intervention in septic kidney injury and provide a reference for optimizing clinical study design and building the core outcome set(COS) of TCM treatment of septic kidney injury. Computer searches were conducted on PubMed, Cochrane Library, EMbase, Web of Science, CNKI, Wanfang, VIP, and SinoMed to find published RCT of TCM intervention in septic kidney injury in the past five years, extract the basic characteristics, intervention measures, outcome indicators, and other data of included studies, and conduct descriptive analysis. 53 RCTs were included, and the sample size was mostly concentrated in 60-80 cases, with abdominal infection being the most common(15 articles, 83.3%) and the TCM syndrome of blood stasis being the most frequent(9 articles, 50.0%). The frequency of intervention methods from high to low were TCM decoction(28 articles, 52.8%), Chinese patent medicine(22 articles, 41.5%), and combined TCM therapy(3 articles, 7.5%); the intervention time of the trial was more than 7 d(34 articles, 69.4%). The risk of bias in included studies was unclear. A total of 84 outcome indicators were involved, which were divided into 9 fields, including 63 physical and chemical tests(305 times, 72.2%), 4 kinds of disease degree(48 times, 11.6%), 4 kinds of clinical effective rate(15 times, 3.6%), 1 kind of quality of life(1 time, 0.2%), 2 kinds of economic evaluation(14 times, 3.3%), 1 kind of TCM disease(9 times, 2.1%), 2 kinds of long-term prognosis(16 times, 3.8%), 2 kinds of safety events(6 times, 1.4%), and 5 other indicators(8 times, 0.7%). The cumulative frequency was 422 times, among which the outcome indicators with higher frequency were inflammatory factors(42 articles, 79.2%) and markers of renal function and kidney injury(40 articles, 75.5%). Only 1(1.9%) of the included articles mentioned primary and secondary outcome indicators, and 6 articles(11.3%) mentioned safety events, 13 articles(24.5%) mentioned economic assessment. The RCT quality of TCM intervention in septic renal injury was generally low, and the reference standards for sepsis, kidney injury, and TCM syndrome diagnosis were not uniform. There are some problems in outcome indicators, such as unclear distinction between primary and secondary indicators, neglect of endpoint indicators, lack of application of TCM characteristic indicators, and insufficient attention to safety events and economic assessment. It is suggested that the quality of clinical research methodology should be improved in the future, and the COS should be constructed to provide high-level evidence-based evidence for TCM intervention in septic kidney injury.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Randomized Controlled Trials as Topic , Sepsis , Humans , Drugs, Chinese Herbal/therapeutic use , Sepsis/drug therapy , Male , Treatment Outcome , Female , Aged , Adult , Middle Aged , Acute Kidney Injury/drug therapy , Acute Kidney Injury/therapy
4.
Phytomedicine ; 129: 155597, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38643713

ABSTRACT

BACKGROUND: Sepsis-induced cardiac dysfunction (SICD) is a serious complication of sepsis that is associated with increased mortality. Ferroptosis has been reported in the SICD. TaoHe ChengQi decoction (THCQD), a classical traditional Chinese medicinal formula, has multiple beneficial pharmacological effects. The potential effects of THCQD on the SICD remain unknown. PURPOSE: To investigate the effect of THCQD on SICD and explore whether this effect is related to the regulation of myocardial ferroptosis through nuclear factor erythroid 2-related factor 2 (Nrf2) activation. METHODS: We induced sepsis in a mouse model using cecal ligation and puncture (CLP) and administered THCQD (2 and 4 g/kg) and dexamethasone (40 mg/kg). Mice mortality was recorded and survival curves were plotted. Echocardiography, hematoxylin and eosin staining, and analysis of serum myocardial injury markers and inflammatory factors were used to evaluate cardiac pathology. Myocardial ferroptosis was detected by quantifying specific biomarker content and protein levels. Through HPLC-Q-Exactive-MS analysis, we identified the components of the THCQD. Network pharmacology analysis and Cellular Thermal Shift Assay (CETSA) were utilized to predict the targets of THCQD for treating SICD. We detected the expression of Nrf2 using Western blotting or immunofluorescence. An RSL3-induced ferroptosis model was established using neonatal rat cardiomyocytes (NRCMs) to further explore the pharmacological mechanism of THCQD. In addition to measuring cell viability, we observed changes in NRCM mitochondria using electron microscopy and JC-1 staining. NRF2 inhibitor ML385 and Nrf2 knockout mice were used to validate whether THCQD exerted protective effects against SICD through Nrf2-mediated ferroptosis signaling. RESULTS: THCQD reduced mortality in septic mice, protected against CLP-induced myocardial injury, decreased systemic inflammatory response, and prevented myocardial ferroptosis. Network pharmacology analysis and CETSA experiments predicted that THCQD may protect against SICD by activating the Nrf2 signaling pathway. Western blotting and immunofluorescence showed that THCQD activated Nrf2 in cardiac tissue. THCQDs consistently mitigated RSL3-induced ferroptosis in NRCM, which is related to Nrf2. Furthermore, the pharmacological inhibition of Nrf2 and genetic Nrf2 knockout partially reversed the protective effects of THCQD on SICD and ferroptosis. CONCLUSION: The effect of THCQD on SICD was achieved by activating Nrf2 and its downstream pathways.


Subject(s)
Drugs, Chinese Herbal , Ferroptosis , NF-E2-Related Factor 2 , Sepsis , Animals , Male , Mice , Rats , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Ferroptosis/drug effects , Heart Diseases/drug therapy , Heart Diseases/etiology , Mice, Inbred C57BL , Myocardium/metabolism , Myocytes, Cardiac/drug effects , Network Pharmacology , NF-E2-Related Factor 2/metabolism , Rats, Sprague-Dawley , Sepsis/complications , Sepsis/drug therapy , Signal Transduction/drug effects
5.
Aging (Albany NY) ; 16(8): 6937-6953, 2024 04 19.
Article in English | MEDLINE | ID: mdl-38643461

ABSTRACT

AIMS: This study aimed to evaluate the effects of VC on SIMI in rats. METHODS: In this study, the survival rate of high dose VC for SIMI was evaluated within 7 days. Rats were randomly assigned to three groups: Sham group, CLP group, and high dose VC (500 mg/kg i.v.) group. The animals in each group were treated with drugs for 1 day, 3 days or 5 days, respectively. Echocardiography, myocardial enzymes and HE were used to detect cardiac function. IL-1ß, IL-6, IL-10 and TNF-α) in serum were measured using ELISA kits. Western blot was used to detect proteins related to apoptosis, inflammation, autophagy, MAPK, NF-κB and PI3K/Akt/mTOR signaling pathways. RESULTS: High dose VC improved the survival rate of SIMI within 7 days. Echocardiography, HE staining and myocardial enzymes showed that high-dose VC relieved SIMI in rats in a time-dependent manner. And compared with CLP group, high-dose VC decreased the expressions of pro-apoptotic proteins, while increased the expression of anti-apoptotic protein. And compared with CLP group, high dose VC decreased phosphorylation levels of Erk1/2, P38, JNK, NF-κB and IKK α/ß in SIMI rats. High dose VC increased the expression of the protein Beclin-1 and LC3-II/LC3-I ratio, whereas decreased the expression of P62 in SIMI rats. Finally, high dose VC attenuated phosphorylation of PI3K, AKT and mTOR compared with the CLP group. SIGNIFICANCE: Our results showed that high dose VC has a good protective effect on SIMI after continuous treatment, which may be mediated by inhibiting apoptosis and inflammatory, and promoting autophagy through regulating MAPK, NF-κB and PI3K/AKT/mTOR pathway.


Subject(s)
Ascorbic Acid , Autophagy , Heart Injuries , Myocardium , Sepsis , Animals , Rats , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Apoptosis/drug effects , Ascorbic Acid/pharmacology , Ascorbic Acid/therapeutic use , Autophagy/drug effects , Heart Injuries/drug therapy , Heart Injuries/etiology , Heart Injuries/metabolism , Myocardium/metabolism , Myocardium/pathology , NF-kappa B/drug effects , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Sepsis/drug therapy , Sepsis/complications , Sepsis/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/drug effects , TOR Serine-Threonine Kinases/metabolism
6.
Clin Nutr ; 43(6): 1299-1307, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663051

ABSTRACT

AIM: The aim of this network meta-analysis (NMA) was to investigate the effects of different dietary supplements on the mortality and clinical status of adults with sepsis. METHODS: We searched PubMed, EMBASE, and the Cochrane Library Central Register of Controlled Trials until February 2023. The inclusion criteria were: 1) randomized controlled trials (RCT)s; 2) adults suffering sepsis or septic shock; 3) evaluation of short- or long-mortality; and 4) publications between 1994 and 2023. The general information of studies and details of interventions were extracted. The primary outcome was short-term mortality (<90 days), and the secondary outcomes were long-term mortality (≥90 days), length of ICU and hospital stays, and duration of mechanical ventilation (MV). The risk of bias of RCTs was assessed using the Cochrane risk of bias tool 2 (ROB2). A random effect NMA was performed to rank the effect of each intervention using a frequentist approach. RESULTS: Finally, 56 RCTs with 5957 participants met the criteria. Approximately, one-third of RCTs were low risk of bias. NMA analysis revealed that there was no treatment more effective in short- or long-term mortality than control or other interventions, except for magnesium (RR: 0.33, 95% CI: 0.14, 0.79; GRADE = low) and vitamin C (RR: 0.81, 95% CI: 0.67, 0.99; low certainty evidence), which had beneficial effects on short-term mortality. Moreover, eicosapentaenoic acid, gamma-linolenic acid, and antioxidants (EPA + GLA + AOs) combination was the most effective, and magnesium, vitamin D and vitamin C were the other effective approaches in terms of duration of MV, and ICU length of stay. There was no beneficial dietary supplement for hospital stay in these patients. CONCLUSIONS: In septic patients, none of the dietary supplements had a substantial effect on mortality except for magnesium and vitamin C, which were linked to lower short-term mortality with low certainty of evidence. Further investigation into high-quality studies with the use of dietary supplements for sepsis should be highly discouraged.


Subject(s)
Dietary Supplements , Network Meta-Analysis , Sepsis , Shock, Septic , Humans , Sepsis/mortality , Sepsis/therapy , Sepsis/drug therapy , Shock, Septic/mortality , Shock, Septic/therapy , Shock, Septic/drug therapy , Randomized Controlled Trials as Topic , Treatment Outcome , Length of Stay/statistics & numerical data , Adult , Respiration, Artificial/mortality
7.
J Ethnopharmacol ; 329: 118155, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38593962

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: A drug pair is a fundamental aspect of traditional Chinese medicine prescriptions. Scutellaria baicalensis Georgi and Coptis chinensis Franch, commonly used as an herb couple (SBCC), are representative heat-clearing and dampness-drying drugs. They possess functions such as clearing heat, drying dampness, purging fire, and detoxifying. These herbs are used in both traditional and modern medicine for treating inflammation. AIM OF THE STUDY: This study investigated the effects of SBCC on cytokine storm syndrome (CSS) and explored its potential regulatory mechanism. MATERIALS AND METHODS: We assessed the impact of SBCC in a sepsis-induced acute lung injury mouse model by administering an intraperitoneal injection of LPS (15 mg/kg). The cytokine levels in the serum and lungs, the wet-to-dry ratio of the lungs, and lung histopathological changes were evaluated. The macrophages in the lung tissue were examined through transmission electron microscopy. Western blot was used to measure the levels of the CD39/NLRP3/GSDMD pathway-related proteins. Immunofluorescence imaging was used to assess the activation of pro-caspase-1 and ASC and their interaction. AMP-Glo™ assay was used to screen for active ingredients in SBCC targeting CD39. One of the ingredients was selected, and its effect on cell viability was assessed. We induced inflammation in macrophages using LPS + ATP and detected the levels of proinflammatory factors. The images of cell membrane large pores were captured using scanning electron microscopy, the interaction between NLRP3 and ASC was detected using immunofluorescence imaging, and the levels of CD39/NLRP3/GSDMD pathway-related proteins were assessed using Western blot. RESULTS: SBCC administration effectively mitigated LPS-induced cytokine storm, pulmonary edema and lung injury. Furthermore, it repressed the programmed death of lung tissue macrophages by inhibiting the NLRP3/GSDMD pyroptosis pathway and regulating the CD39 purinergic pathway. Based on the results of the AMP-Glo™ assay, we selected wogonoside for further valuation. Wogonoside alleviated LPS + ATP-induced inflammatory damage by regulating the inhibiting the NLRP3/GSDMD pyroptosis pathway and regulating the CD39 purinergic pathway. However, its effect on NLRP3 is not mediated though CD39. CONCLUSION: SBCC and its active small-molecule ingredient, wogonoside, improved CSS by regulating the NLRP3/GSDMD pyroptosis pathway and its upstream CD39 purinergic pathway. It is essential to note that the regulatory effect of wogonoside on NLRP3 is not mediated by CD39.


Subject(s)
Acute Lung Injury , NLR Family, Pyrin Domain-Containing 3 Protein , Signal Transduction , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction/drug effects , Mice , Male , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Cytokine Release Syndrome/drug therapy , Lipopolysaccharides/toxicity , Mice, Inbred C57BL , Glucosides/pharmacology , Scutellaria baicalensis/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Phosphate-Binding Proteins/metabolism , Sepsis/drug therapy , Sepsis/metabolism , Lung/drug effects , Lung/pathology , Lung/metabolism , RAW 264.7 Cells , Antigens, CD/metabolism , Cytokines/metabolism , Disease Models, Animal
8.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(2): 381-386, 2024 Feb 20.
Article in Chinese | MEDLINE | ID: mdl-38501424

ABSTRACT

OBJECTIVE: To investigate the mechanism of tea polyphenols (TP) for regulating NLRP3 inflammasomes and alleviating acute lung injury in septic mice. METHODS: Sixty C57BL/6 mice were randomly assigned into sham-operated, cecal ligation and puncture (CLP) and CLP +TP treatment groups, and survival of the mice was recorded after modeling in each group. The lung wet/dry weight ratio and myeloperoxidase (MPO) activity were determined, and lung injury of the mice was evaluated using HE staining and acute lung injury score. The expressions of IL-1ß, TNF-α, IL-6, NLRP3, caspase-1 p10, ASC, MPO, and caspase-8 in the lung tissue were detected using ELISA, Western blotting, or immunohistochemical staining. MDA and H2O2 levels in the lungs were detected to evaluate the level of oxidative stress. Immunofluorescence assay was used to investigate the co-localization of NLRP3 and NOX4. RESULTS: The postoperative mortality rate at 72 h, lung wet/dry weight ratio, MPO level and acute lung injury scores were significantly lower in CLP+TP group than in CLP group (P < 0.05). Treatment with TP significantly reduced the expressions of NLRP3-related inflammatory factors (P < 0.05) and lowered MDA and H2O2 levels in the lung tissue of the septic mice (P < 0.05). Immunofluorescence co-staining showed a lower level of NOX4 and NLRP3 co-localization in CLP+TP group than in CLP group. CONCLUSION: TP inhibits NLRP3 inflammasome-associated inflammation to alleviate CLP-induced acute lung injury in mice through a regulatory mechanism that inhibits NOX4 expression and reduces oxidative stress in the lung tissue.


Subject(s)
Acute Lung Injury , Sepsis , Mice , Animals , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Hydrogen Peroxide , Mice, Inbred C57BL , Acute Lung Injury/drug therapy , Lung/metabolism , Sepsis/drug therapy , Sepsis/metabolism , Tea
9.
Nutr J ; 23(1): 31, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38444016

ABSTRACT

BACKGROUND: Sepsis, a life-threatening organ dysfunction caused by a host's dysregulated response to infection with an inflammatory process, becomes a real challenge for the healthcare systems. L-carnitine (LC) has antioxidant and anti-inflammatory properties as in previous studies. Thus, we aimed to determine the effects of LC on inflammation, oxidative stress, and clinical parameters in critically ill septic patients. METHODS: A randomized double-blinded controlled trial was conducted. A total of 60 patients were randomized to receive LC (3 g/day, n = 30) or placebo (n = 30) for 7 days. Inflammatory and oxidative stress parameters (C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), superoxide dismutase (SOD), malondialdehyde (MDA), total antioxidant capacity (TAC), 28-day mortality rate, and some monitoring variables were evaluated. RESULTS: There was no statistically significant difference between study arms in baseline characteristics and disease severity scores. CRP (p < 0.001) and ESR (p: 0.004) significantly reduced, and SOD (p < 0.001) and TAC (p < 0.001) significantly improved in the LC group after 7 days. Between-group analysis revealed a significant reduction in CRP (p: 0.001) and serum chloride (p: 0.032), an increase in serum albumin (p: 0.036) and platelet (p: 0.004) significantly, and an increase in SOD marginally (p: 0.073). The 28-day mortality rate was also lower in the LC group compared with placebo (7 persons vs. 15 persons) significantly (odds ratio: 0.233, p: 0.010). CONCLUSIONS: L-carnitine ameliorated inflammation, enhanced antioxidant defense, reduced mortality, and improved some clinical outcomes in critically ill patients with sepsis. TRIAL REGISTRATION: IRCT20201129049534N1; May 2021.


Subject(s)
Antioxidants , Sepsis , Humans , Antioxidants/therapeutic use , Critical Illness , Inflammation/drug therapy , Oxidative Stress , C-Reactive Protein , Sepsis/drug therapy , Carnitine/therapeutic use , Superoxide Dismutase , Dietary Supplements
10.
J Control Release ; 369: 215-230, 2024 May.
Article in English | MEDLINE | ID: mdl-38508529

ABSTRACT

In the progression of acute inflammation, the activation and recruitment of macrophages and neutrophils are mutually reinforcing, leading to amplified inflammatory response and severe tissue damage. Therefore, to regulate the axis of neutrophils and macrophages is essential to avoid tissue damage induced from acute inflammatory. Apoptotic neutrophils can regulate the anti-inflammatory activity of macrophages through the efferocytosis. The strategy of in situ targeting and inducing neutrophil apoptosis has the potential to modulate macrophage activity and transfer anti-inflammatory drugs. Herein, a natural glycyrrhiza protein nanoparticle loaded with dexamethasone (Dex@GNPs) was constructed, which could simultaneously regulate neutrophil and macrophage function during acute inflammation treatment by combining in situ neutrophil apoptosis and macrophage efferocytosis. Dex@GNPs can be rapidly and selectively internalized by neutrophils and subsequently induce neutrophils apoptosis through a ROS-dependent mechanism. The efferocytosis of apoptotic neutrophils not only promoted the polarization of macrophages into anti-inflammatory state, but also facilitated the transfer of Dex@GNPs to macrophages. This enabled dexamethasone to further modulate macrophage function. In mouse models of acute respiratory distress syndrome and sepsis, Dex@GNPs significantly ameliorated the disordered immune microenvironment and alleviated tissue injury. This study presents a novel strategy for drug delivery and inflammation regulation to effectively treat acute inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents , Apoptosis , Dexamethasone , Glycyrrhiza , Inflammation , Macrophages , Nanoparticles , Neutrophils , Animals , Dexamethasone/administration & dosage , Dexamethasone/pharmacology , Apoptosis/drug effects , Neutrophils/drug effects , Neutrophils/immunology , Nanoparticles/chemistry , Macrophages/drug effects , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , Glycyrrhiza/chemistry , Mice, Inbred C57BL , Male , Mice , Phagocytosis/drug effects , Humans , Sepsis/drug therapy , Sepsis/immunology , Respiratory Distress Syndrome/drug therapy , RAW 264.7 Cells , Efferocytosis
11.
Int Immunopharmacol ; 132: 111870, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38547771

ABSTRACT

Extracellular histones have been determined as important mediators of sepsis, which induce excessive inflammatory responses in macrophages and impair innate immunity. Magnesium (Mg2+), one of the essential nutrients of the human body, contributes to the proper regulation of immune function. However, no reports indicate whether extracellular histones affect survival and bacterial phagocytosis in macrophages and whether Mg2+ is protective against histone-induced macrophage damage. Our clinical data revealed a negative correlation between circulating histone and monocyte levels in septic patients, and in vitro experiments confirmed that histones induced mitochondria-associated apoptosis and defective bacterial phagocytosis in macrophages. Interestingly, our clinical data also indicated an association between lower serum Mg2+ levels and reduced monocyte levels in septic patients. Moreover, in vitro experiments demonstrated that Mg2+ attenuated histone-induced apoptosis and defective bacterial phagocytosis in macrophages through the PLC/IP3R/STIM-mediated calcium signaling pathway. Importantly, further animal experiments proved that Mg2+ significantly improved survival and attenuated histone-mediated lung injury and macrophage damage in histone-stimulated mice. Additionally, in a cecal ligation and puncture (CLP) + histone-induced injury mouse model, Mg2+ inhibited histone-mediated apoptosis and defective phagocytosis in macrophages and further reduced bacterial load. Overall, these results suggest that Mg2+ supplementation may be a promising treatment for extracellular histone-mediated macrophage damage in sepsis.


Subject(s)
Apoptosis , Calcium Signaling , Histones , Macrophages , Magnesium , Mice, Inbred C57BL , Phagocytosis , Sepsis , Animals , Phagocytosis/drug effects , Apoptosis/drug effects , Magnesium/metabolism , Histones/metabolism , Humans , Macrophages/immunology , Macrophages/drug effects , Macrophages/metabolism , Sepsis/immunology , Sepsis/drug therapy , Sepsis/metabolism , Mice , Male , Calcium Signaling/drug effects , Female , Middle Aged , RAW 264.7 Cells
12.
Phytomedicine ; 128: 155520, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38489892

ABSTRACT

BACKGROUND: Sepsis is considered as a severe illness due to its high mortality. Sepsis can cause septic encephalopathy, thus leading to brain injury, behavioral and cognitive dysfunction. Pyroptosis is a type of regulated cell death (RCD) and takes a crucial part in occurrence and development of sepsis. Americanin B (AMEB) is a lignan compounds, which is extracted from Vernicia fordii. In our previous study, AMEB could inhibit microglial activation in inflammatory cell model. However, the function of AMEB in septic encephalopathy mice is uncertain. It would be worthwhile to ascertain the role and mechanism of AMEB in sepsis. PURPOSE: Current study designs to certify the relationship between pyroptosis and septic encephalopathy, and investigate whether AMEB can restrain NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome activation and restrict pyroptosis by targeting NLRP3 in septic mice model. STUDY DESIGN: C57BL/6 mice were utilized to perform sepsis model in vivo experiments. BV-2 cell lines were used for in vitro experiments. METHODS: In vivo sepsis model was established by lipopolysaccharide (LPS) intraperitoneal injection in male C57BL/6 J mice and in vitro model was exposed by LPS plus ATP in BV-2 cells. The survival rate was monitored on the corresponding days. NLRP3, apoptosis associated Speck-like protein (ASC), caspase-1, GasderminD (GSDMD), interleukin-1ß (IL-1ß) and interleukin-18 (IL-18) level were detected by western blotting and immunofluorescence analysis. Molecular docking, cellular thermal shift assay (CETSA), drug affinity responsive target stability (DARTS) experiments, RNAi transfection and quantitative real-time PCR were applied to confirm the potential target of AMEB. RESULTS: The results suggested that AMEB could rise survival percentage and lighten brain injury in LPS-induced sepsis mice. In addition, AMEB could inhibit pyroptosis and the activiation of NLRP3 inflammasome. The inhibiting function of AMEB on the activiation of NLRP3 inflammasome is weakened following si-NLRP3 transfection. Moreover, AMEB exerted anti-pyroptosis effect via targeting NLRP3 protein. CONCLUSIONS: Our findings first indicate NLRP3 is an effective druggable target for septic encephalopathy related brain injury, and also provide a candidate-AMEB for the treatment of septic encephalopathy. These emerging findings on AMEB in models of sepsis suggest an innovative approach that may be beneficial in the prevention of septic encephalopathy.


Subject(s)
Disease Models, Animal , Indenes , Lipopolysaccharides , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Sepsis-Associated Encephalopathy , Sulfonamides , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/drug effects , Mice , Sepsis-Associated Encephalopathy/drug therapy , Male , Heterocyclic Compounds, 4 or More Rings/pharmacology , Furans/pharmacology , Inflammasomes/drug effects , Inflammasomes/metabolism , Sepsis/drug therapy , Sepsis/complications , Interleukin-1beta/metabolism
13.
Environ Toxicol ; 39(6): 3341-3355, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38440848

ABSTRACT

BACKGROUND: Sepsis remains a crucial global health issue characterized by high mortality rates and a lack of specific treatments. This study aimed to elucidate the molecular mechanisms underlying sepsis and to identify potential therapeutic targets and compounds. METHODS: High-throughput sequencing data from the GEO database (GSE26440 as the training set and GSE13904 and GSE32707 as the validation sets), weighted gene co-expression network analysis (WGCNA), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, alongside a combination of PPI and machine learning methods (LASSO and SVM) were utilized. RESULTS: WGCNA identified the black module as positively correlated, and the green module as negatively correlated with sepsis. Further intersections of these module genes with age-related genes yielded 57 sepsis-related genes. GO and KEGG pathway enrichment analysis, PPI, LASSO, and SVM selected six hub aging-related genes: BCL6, FOS, ETS1, ETS2, MAPK14, and MYC. A diagnostic model was constructed based on these six core genes, presenting commendable performance in both the training and validation sets. Notably, ETS1 demonstrated significant differential expression between mild and severe sepsis, indicating its potential as a biomarker of severity. Furthermore, immune infiltration analysis of these six core genes revealed their correlation with most immune cells and immune-related pathways. Additionally, compounds were identified in the traditional Chinese medicine Danshen, which upon further analysis, revealed 354 potential target proteins. GO and KEGG enrichment analysis of these targets indicated a primary enrichment in inflammation and immune-related pathways. A Venn diagram intersects these target proteins, and our aforementioned six core genes yielded three common genes, suggesting the potential efficacy of Danshen in sepsis treatment through these genes. CONCLUSIONS: This study highlights the pivotal roles of age-related genes in the molecular mechanisms of sepsis, offers potential biomarkers, and identifies promising therapeutic compounds, laying a robust foundation for future studies on the treatment of sepsis.


Subject(s)
Aging , Biomarkers , Sepsis , Sepsis/drug therapy , Sepsis/genetics , Humans , Biomarkers/metabolism , Machine Learning , Gene Regulatory Networks/drug effects , Gene Expression Profiling , Gene Ontology , Databases, Genetic
14.
Int Immunopharmacol ; 129: 111615, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38330799

ABSTRACT

Maclurin is a natural phenolic compound isolated from Morus alba(white mulberry) andGarcinia mangostana (purple mangosteen) and has been reported to regulate cancer progression, oxidative stress, and melanogenesis. The regulatory role of maclurin, however, has never been demonstrated. This study investigated in vitro and in vivo anti-inflammatory roles of maclurin and the underlying mechanism in caspase-11 non-canonical inflammasome-stimulated inflammatory responses in macrophages and an animal model of acute lethal sepsis. Maclurin protected J774A.1 macrophages from LPS-induced cytotoxicity and suppressed caspase-11 non-canonical inflammasome-stimulated pyroptosis. Maclurin decreased the secretion and mRNA expression of pro-inflammatory cytokines and inflammatory mediators, such as IL-1ß, IL-18, TNF-α, IL-6, nitric oxide (NO), and inducible NO synthase (iNOS) in caspase-11 non-canonical inflammasome-stimulated J774A.1 macrophages. Mechanistic studies revealed that maclurin markedly suppressed the proteolytic activation of caspase-11 and gasdermin D (GSDMD) in caspase-11 non-canonical inflammasome-stimulated J774A.1 macrophages, while it did not inhibit caspase-11-mediated direct sensing of LPS. In vivo study revealed that maclurin ameliorated acute lethal sepsis in mice by increasing the survival rate and decreasing the serum levels of IL-1ß and IL-18 without significant toxicity. In conclusion, this study suggests that maclurin is a novel anti-inflammatory agent in inflammatory responses and against acute lethal sepsis via the inhibition of the caspase-11 non-canonical inflammasome in macrophages, which justifies its potential as an anti-inflammatory therapeutic agent in traditional medicine.


Subject(s)
Inflammasomes , Plant Lectins , Sepsis , Animals , Mice , Inflammasomes/metabolism , Caspases/metabolism , Interleukin-18/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Sepsis/drug therapy , Sepsis/metabolism , Anti-Inflammatory Agents/pharmacology
15.
Free Radic Biol Med ; 214: 80-86, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38346662

ABSTRACT

Alpha-ketoglutaric acid (2-ketoglutaric acid or 2-oxoglutaric acid, AKG), a crucial intermediate in the tricarboxylic acid cycle, is pivotal in animal antioxidative process. The purpose of this study was to investigate whether AKG has the efficacy to mitigate spleen oxidative stress in lipopolysaccharide (LPS)-induced sepsis piglets through the modulation of mitochondrial dynamics and autophagy. Utilizing a 2 × 2 factorial design, the study encompassed 24 piglets subjected to varying diets (basal or 1% AKG) and immune stimulations (saline or LPS) over 21 days. Subsequently, they were injected intraperitoneally with either LPS or saline solution. The results showed that LPS decreased antioxidant capacity, whereas AKG supplementation increased antioxidant activities compared to control group. LPS elevated mitochondrial fission factor, mitochondrial elongation factor 1, mitochondrial elongation factor 2, dynamin-related protein 1, voltage-dependent anion channel 1, and fission 1 mRNA abundance, but reduced mRNA abundance of mitofusin 1, mitofusin 2, and optic atrophy 1 compared to controls. LPS elevated mRNA abundance of autophagy related protein 5, autophagy related protein 7, P62, Beclin1, and interleukin-1ß mRNA abundance compared to controls. However, AKG supplementation mitigated these effects induced by LPS. Additionally, AKG intake was associated with lower protein expressions of microtubule-associated protein light chain 3, Parkin, and PTEN-induced putative kinase 1 compared to LPS-challenged piglets. These results suggested that AKG could alleviate spleen oxidative stress caused by LPS by regulating mitochondrial dynamics and autophagy.


Subject(s)
Sepsis , Spleen , Animals , Swine , Ketoglutaric Acids , Lipopolysaccharides/toxicity , Mitochondrial Dynamics , Antioxidants , Oxidative Stress , Autophagy , Sepsis/chemically induced , Sepsis/drug therapy , RNA, Messenger
16.
Phytother Res ; 38(4): 1783-1798, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38323338

ABSTRACT

Macrophage inflammation plays a central role during the development and progression of sepsis, while the regulation of macrophages by parthanatos has been recently identified as a novel strategy for anti-inflammatory therapies. This study was designed to investigate the therapeutic potential and mechanism of pimpinellin against LPS-induced sepsis. PARP1 and PAR activation were detected by western blot or immunohistochemistry. Cell death was assessed by flow cytometry and western blot. Cell metabolism was measured with a Seahorse XFe24 extracellular flux analyzer. C57, PARP1 knockout, and PARP1 conditional knock-in mice were used in a model of sepsis caused by LPS to assess the effect of pimpinellin. Here, we found that pimpinellin can specifically inhibit LPS-induced macrophage PARP1 and PAR activation. In vitro studies showed that pimpinellin could inhibit the expression of inflammatory cytokines and signal pathway activation in macrophages by inhibiting overexpression of PARP1. In addition, pimpinellin increased the survival rate of LPS-treated mice, thereby preventing LPS-induced sepsis. Further research confirmed that LPS-induced sepsis in PARP1 overexpressing mice was attenuated by pimpinellin, and PARP1 knockdown abolished the protective effect of pimpinellin against LPS-induced sepsis. Further study found that pimpinellin can promote ubiquitin-mediated degradation of PARP1 through RNF146. This is the first study to demonstrate that pimpinellin inhibits excessive inflammatory responses by promoting the ubiquitin-mediated degradation of PARP1.


Subject(s)
Lipopolysaccharides , Methoxsalen , Sepsis , Animals , Mice , Inflammation/metabolism , Macrophages , Methoxsalen/analogs & derivatives , Mice, Inbred C57BL , Sepsis/chemically induced , Sepsis/drug therapy , Ubiquitination , Ubiquitins/metabolism
17.
Adv Biol (Weinh) ; 8(3): e2300542, 2024 03.
Article in English | MEDLINE | ID: mdl-38408269

ABSTRACT

Sepsis is a life-threatening syndrome leading to hemodynamic instability and potential organ dysfunction. Oridonin, commonly used in Traditional Chinese Medicine (TCM), exhibits significant anti-inflammation activity. To explore the protective mechanisms of oridonin against the pathophysiological changes, the authors conducted single-cell transcriptome (scRNA-seq) analysis on septic liver models induced by cecal ligation and puncture (CLP). They obtained a total of 63,486 cells, distributed across 11 major cell clusters, and concentrated their analysis on four specific clusters (hepatocytes/Heps, macrophages, endothelial/Endos and T/NK) based on their changes in proportion during sepsis and under oridonin treatment. Firstly, biological changes in Hep, which are related to metabolic dysregulation and pro-inflammatory signaling, are observed during sepsis. Secondly, they uncovered the dynamic profiles of macrophage's phenotype, indicating that a substantial number of macrophages exhibited a M1-skewed phenotype associated with pro-inflammatory characteristics in septic model. Thirdly, they detected an upregulation of both inflammatory cytokines and transcriptomic factor Nfkb1 expression within Endo, along with slight capillarization during sepsis. Moreover, excessive accumulation of cytotoxic NK led to an immune imbalance. Though, oridonin ameliorated inflammatory-related responses and improved the liver dysfunction in septic mice. This study provides fundamental evidence of the protective effects of oridonin against sepsis-induced cytokine storm.


Subject(s)
Cytokines , Diterpenes, Kaurane , Sepsis , Mice , Animals , Cytokines/genetics , Cytokines/pharmacology , Sepsis/complications , Sepsis/drug therapy , Sepsis/genetics , Liver , Gene Expression Profiling
18.
Pharm Biol ; 62(1): 250-260, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38389274

ABSTRACT

CONTEXT: Sepsis can result in critical organ failure, and notoginsenoside R1 (NGR1) offers mitochondrial protection. OBJECTIVE: To determine whether NGR1 improves organ function and prognosis after sepsis by protecting mitochondrial quality. MATERIALS AND METHODS: A sepsis model was established in C57BL/6 mice using cecum ligation puncture (CLP) and an in vitro model with lipopolysaccharide (LPS, 10 µg/mL)-stimulated primary intestinal microvascular endothelial cells (IMVECs) and then determine NGR1's safe dosage. Groups for each model were: in vivo-a control group, a CLP-induced sepsis group, and a CLP + NGR1 treatment group (30 mg/kg/d for 3 d); in vitro-a control group, a LPS-induced sepsis group, and a LPS + NGR1 treatment group (4 µM for 30 min). NGR1's effects on survival, intestinal function, mitochondrial quality, and mitochondrial dynamic-related protein (Drp1) were evaluated. RESULTS: Sepsis resulted in approximately 60% mortality within 7 days post-CLP, with significant reductions in intestinal microvascular perfusion and increases in vascular leakage. Severe mitochondrial quality imbalance was observed in IMVECs. NGR1 (IC50 is 854.1 µM at 30 min) targeted Drp1, inhibiting mitochondrial translocation, preventing mitochondrial fragmentation and restoring IMVEC morphology and function, thus protecting against intestinal barrier dysfunction, vascular permeability, microcirculatory flow, and improving sepsis prognosis. DISCUSSION AND CONCLUSIONS: Drp1-mediated mitochondrial quality imbalance is a potential therapeutic target for sepsis. Small molecule natural drugs like NGR1 targeting Drp1 may offer new directions for organ protection following sepsis. Future research should focus on clinical trials to evaluate NGR1's efficacy across various patient populations, potentially leading to novel treatments for sepsis.


Subject(s)
Ginsenosides , Lipopolysaccharides , Sepsis , Humans , Mice , Animals , Endothelial Cells/metabolism , Microcirculation , Mice, Inbred C57BL , Sepsis/drug therapy , Sepsis/metabolism
19.
Photobiomodul Photomed Laser Surg ; 42(2): 148-158, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38301209

ABSTRACT

Background: Sepsis-induced acute lung injury (ALI) is a clinical syndrome characterized by excessive uncontrolled inflammation. Photobiomodulation such as light-emitting diode (LED) irradiation has been used to attenuate inflammatory disease. Objective: The protective effect of 630 nm LED irradiation on sepsis-induced ALI remains unknown. The purpose of this study was to investigate the role of 630 nm LED irradiation in sepsis-induced ALI and its underlying mechanism. Methods and results: C57BL/6 mice were performed cecal ligation and puncture (CLP) for 12 h to generate experimental sepsis models. Histopathology analysis showed that alveolar injury, inflammatory cells infiltration, and hemorrhage were suppressed in CLP mice after 630 nm LED irradiation. The ratio of wet/dry weigh of lung tissue was significantly inhibited by irradiation. The number of leukocytes was reduced in bronchoalveolar lavage fluid. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) results and enzyme-linked immunosorbent assay showed that 630 nm LED irradiation significantly inhibited the mRNA and protein levels of M1 macrophage-related genes in the lung of CLP-induced septic mice. Meanwhile, LED irradiation significantly inhibited signal transducer and activator of transcription 1 (STAT1) phosphorylation in the lung of septic mice. In vitro experiments showed that 630 nm LED irradiation significantly inhibited M1 genes mRNA and protein expression in THP-1-derived M1 macrophages without affecting the cell viability. LED irradiation also significantly inhibited the level of STAT1 phosphorylation in THP-1-derived M1 macrophages. Conclusions: We concluded that 630 nm LED is promising as a treatment against ALI through inhibiting M1 macrophage polarization, which is associated with the downregulation of STAT1 phosphorylation.


Subject(s)
Acute Lung Injury , Low-Level Light Therapy , Sepsis , Mice , Animals , Mice, Inbred C57BL , Acute Lung Injury/complications , Acute Lung Injury/drug therapy , Macrophages , Sepsis/complications , Sepsis/radiotherapy , Sepsis/drug therapy , RNA, Messenger
20.
Int Immunopharmacol ; 129: 111580, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38310763

ABSTRACT

BACKGROUND: LL-37 (also known as murine CRAMP) is a human antimicrobial peptide that plays a crucial role in innate immune defence against sepsis through various mechanisms. However, its involvement in sepsis-induced lung injury remains unclear. OBJECTIVES: This work investigates the impact of LL-37 on pyroptosis generated by LPS in alveolar epithelial cells. The research utilizes both in vivo and in vitro sepsis-associated acute lung injury (ALI) models to understand the underlying molecular pathways. METHODS: In vivo, an acute lung injury model induced by sepsis was established by intratracheal administration of LPS in C57BL/6J mice, which were subsequently treated with low-dose CRAMP (recombinant murine cathelicidin, 2.5 mg.kg-1) and high-dose CRAMP (5.0 mg.kg-1). In vitro, pyroptosis was induced in a human alveolar epithelial cell line (A549) by stimulation with LPS and ATP. Treatment was carried out with recombinant human LL-37, or LL-37 was knocked out in A549 cells using small interfering RNA (siRNA). Subsequently, haematoxylin and eosin staining was performed to observe the histopathological changes in lung tissues in the control group and sepsis-induced lung injury group. TUNEL and PI staining were used to observe DNA fragmentation and pyroptosis in mouse lung tissues and cells in the different groups. An lactate dehydrogenase (LDH) assay was performed to measure the cell death rate. The expression levels of NLRP3, caspase1, caspase 1 p20, GSDMD, NT-GSDMD, and CRAMP were detected in mice and cells using Western blotting, qPCR, and immunohistochemistry. ELISA was used to assess the levels of interleukin (IL)-1ß and IL-18 in mouse serum, bronchoalveolar lavage fluid (BALF) and lung tissue and cell culture supernatants. RESULTS: The expression of NLRP3, caspase1 p20, NT-GSDMD, IL 18 and IL1ß in the lung tissue of mice with septic lung injury was increased, which indicated activation of the canonical pyroptosis pathway and coincided with an increase in CRAMP expression. Treatment with recombinant CRAMP improved pyroptosis in mice with lung injury. In vitro, treatment with LPS and ATP upregulated these classic pyroptosis molecules, LL-37 knockdown exacerbated pyroptosis, and recombinant human LL-37 treatment alleviated pyroptosis in alveolar epithelial cells. CONCLUSION: These findings indicate that LL-37 protects against septic lung injury by modulating the expression of classic pyroptotic pathway components, including NLRP3, caspase1, and GSDMD and downstream inflammatory factors in alveolar epithelial cells.


Subject(s)
Acute Lung Injury , Sepsis , Animals , Humans , Mice , Acute Lung Injury/drug therapy , Adenosine Triphosphate , Alveolar Epithelial Cells , Lipopolysaccharides , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Sepsis/complications , Sepsis/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL